Министерство образования Оренбургской области Государственное автономное профессиональное образовательное учреждение «Орский нефтяной техникум им. Героя Советского Союза В.А. Сорокина»

УТВЕРЖДАЮ

Директор ГАПОУ

«ОНТ им. В.А. Сорокина»

Т.Б. Кочеткова

05% cerame 10/ 2012r.

дополнительная общеобразовательная программа «Программирование роботов (уровень 2)»

Содержание

1. Пояснительная записка	3
2. Цель и задачи	3
3. Нормативная база	4
4. Планируемые результаты освоения программы	6
5. Тематическое планирование	7
6. Материально-техническое обеспечение	9
7. Дидактические материалы	9

1. Пояснительная записка

Сегодня потребность в программировании роботов стала такой же повседневной задачей для продвинутого учащегося, как решение задач по математике или выполнение упражнений по русскому языку. Существующие среды программирования, как локальные, так и виртуальные, служат хорошим инструментарием для того, чтобы научиться программировать роботов. Хотя правильнее сказать не роботов, а контроллеры, которые управляют роботами. Но «робот» — понятие более широкое, чем мы привыкли считать.

Дополнительная общеобразовательная общеразвивающая программа «Программирование роботов (уровень 2)» обладает технической направленностью и ориентирована на развитие технических и творческих способностей обучающихся, формирование знаний, умений, и навыков в области робототехники продвинутого уровня, организацию исследовательской и проектной деятельности, а также овладение универсальными навыками, не связанными с конкретной предметной областью, такими как взаимопомощь, организаторские и лидерские качества, аккуратность, самостоятельность, ответственность, дисциплинированность.

Актуальность предлагаемой образовательной программы определяется запросом со стороны детей и их родителей на программы технического развития школьников. Робототехника является перспективной областью для применения образовательных методик в процессе обучения за счет объединения в себе различных инженерных и естественнонаучных дисциплин. Программа даёт возможность обучить детей профессиональным навыкам в области робототехники и предоставляет условия для проведения педагогом профориентационной работы. Кроме того, обучение по данной программе способствует развитию творческой деятельности, конструкторскотехнологического мышления детей, приобщает их к решению конструкторских, художественно-конструкторских и технологических задач.

Программа предназначена для ребят, успешно завершивших курс «Программирование роботов (уровень 1)».

Робот — это любое электронное устройство, управляемое контроллером, который нужно соответствующим образом запрограммировать.

Для того чтобы запрограммировать робота, сначала необходимо сформировать у учащегося основы алгоритмического мышления. Для решения этой задачи лучше всего подходит популярная среда Scratch с графическим интерфейсом (http://scratch.mit.edu), которая наглядна и проста и, что немаловажно, бесплатна. В этой среде можно работать как в режиме онлайн (прямо на сайте), так и локально, установив редактор Scratch на свой ПК. Это позволит научить обучающихся программировать (создавать) игровые программы и тем самым получить ключевые навыки программирования на этом языке, которые в дальнейшем понадобятся для программирования роботов.

На следующем этапе, в зависимости от учебных планов и оборудования, можно начинать программировать уже конкретные устройства, как виртуальные, так и реальные, в частности роботов или электронные устройства (например, «умный дом»).

Самый простой способ запрограммировать робота в Scratch описан на сайте https://vr.vex.com («Виртуальные роботы VEX»), который также бесплатен. Здесь пользователь познакомится с датчиками и расширенными опциями движения. Представленный на этом интернет-ресурсе набор заданий (игровых полей или карт) для робота уже достаточно широк и может активно использоваться в учебном процессе.

Программная среда Scratch является универсальной для программирования многих образовательных робототехнических систем (конструкторов), и поэтому выбор бесплатной платформы VEXcode VR обусловлен именно этими факторами.

Для совершенствования навыков работы со Scratch можно использовать следующие реальные образовательные робототехнические системы (конструкторы).

- 1. Цифровая лаборатория школьника «Тетра»: https://amperka.ru/product/tetra-kit.
- 2. Робоплатформа «Роббо»: https://robbo.ru.
- 3. Modkit for VEX: http://vex.examen-technolab.ru/vexiq/iqprogrammirovanie.

4. Lego Education Spike: https://education.lego.com/ru-ru/products/-lego-education-spike-prime/45678#spike%E2%84%A2-prime.

Подчеркнём, что многие производители робототехнических систем (VEX, «Роботрек» и пр.) так или иначе используют в своих редакторах кода программирование контроллеров с помощью графических блоков по аналогии со Scratch. Это упрощает переход уже на «взрослое» программирование на других языках, чаще всего на языке Си. Во многих системах переход Scratch \rightarrow Си происходит автоматически, т. е. программа, написанная в Scratch, автоматически переводится в Си, и наоборот.

После того как обучающиеся освоят программирование на Scratch, можно переходить к программированию на других языках, как было уже сказано выше, прежде всего, на язык Си, так как он является основным для программирования контроллеров, в первую очередь Arduino. В этом случае может помочь бесплатная среда онлайн-моделирования Tinkercad (http://tinkercad.com).

На занятиях обучающиеся конструируют модели роботов из конструктора Vex.IQ, программируют их на языке Scratch в программе VEXcode VR.

Конструктор VEX.IQ — это уникальный образовательный набор, сочетающий в себе разнообразие металлических и пластиковых деталей. Конструктор направлен на развитие знаний по информатике, физике, механике, математике, а также на стимулирование творческих способностей у детей.

2. Цель и задачи

Цель программы «Программирование роботов (уровень 2)»: развитие алгоритмического мышления обучающихся, их творческих способностей, аналитических и логических компетенций, а также пропедевтика будущего изучения программирования роботов на одном из современных языков.

При работе с платформой VEXcode VR решаются следующие основные задачи.

Познавательные задачи:

- начальное освоение компьютерной среды Scratch в качестве инструмента для программирования роботов;
- систематизация и обобщение знаний по теме «Алгоритмы» в ходе создания управляющих программ в среде Scratch;
- создание завершённых проектов с использованием освоенных навыков структурного программирования.

Регулятивные задачи:

- формирование навыков планирования определения последовательности промежуточных целей с учётом конечного результата;
- освоение способов контроля в форме сопоставления способа действия и его результата с заданным образцом с целью обнаружения отличий от эталона.

Коммуникативные задачи:

- формирование умения работать над проектом в команде;
- овладением умением эффективно распределять обязанности.

Возраст обучающихся, участвующих в реализации программы: 10—12 лет.

Уровень освоения: программа является общеразвивающей (базовый уровень), не требует предварительных знаний и входного тестирования.

Режим занятий: занятия проводятся в группах до 13 человек,

Сроки реализации: общая продолжительность программы — 72 часа.

3. Нормативная база

1. Конституция Российской Федерации (принята всенародным голосованием 12.12.1993

- с изменениями, одобренными в ходе общероссийского голосования 01.07.2020). URL: http://www.consultant.ru/document/cons doc LAW 28399/ (дата обращения:10.03.2021).
- 2. Федеральный закон от 29.12.2012 № 273-ФЗ (ред. от 31.07.2020) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 01.09.2020). URL: http://www.consultant.ru/document/cons doc LAW 140174 (дата обращения: 28.09.2020).
- 3. Паспорт национального проекта «Образование» (утверждён президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 № 16). URL: http://www.consultant.ru/document/cons_doc_LAW_319308/ (дата обращения: 10.03.2021).
- 4. Государственная программа Российской Федерации «Развитие образования» (утверждена постановлением Правительства РФ от 26.12.2017 № 1642 (ред. от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования»). URL: http://www.consultant.ru/document/cons doc LAW 286474/ (дата обращения: 10.03.2021).
- 5. Стратегия развития воспитания в Российской Федерации на период до 2025 года (утверждена распоряжением Правительства РФ от 29.05.2015 № 996-р «Об утверждении Стратегии развития воспитания в Российской Федерации на период до 2025 года»). URL: http://www.consultant.ru/document/cons_doc_LAW_180402/ (дата обращения: 10.03.2021).
- 6. Профессиональный стандарт «Педагог (педагогическая деятельность в дошкольном, начальном общем, основном общем, среднем общем образовании), (воспитатель, учитель)» (ред. от 16.06.2019) (приказ Министерства труда и социальной защиты РФ от 18 октября 2013 г. № 544н, с изменениями, внесёнными приказом Министерства труда и соцза-щиты РФ от 25 декабря 2014 г. № 1115н и от 5 августа 2016 г. № 422н). URL: http://www.consultant.ru/document/cons doc LAW 155553/ (дата обращения: 10.03.2021).
- 7. Профессиональный стандарт «Педагог дополнительного образования детей и взрослых» (приказ Министерства труда и социальной защиты РФ от 5 мая 2018 г. № 298н «Обутверждении профессионального стандарта «Педагог дополнительного образования де-тей и взрослых»). URL: https://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/reestr-professionalnykh-standartov/index.php?ELEMENT_ID=48583 (дата обращения: 10.03.2021).
- 8. Федеральный государственный образовательный стандарт основного общего образования (утверждён приказом Министерства образования и науки Российской Федерацииот 17 декабря 2010 г. № 1897) (ред. 21.12.2020). URL: https://fgos.ru (дата обращения: 10.03.2021).
- 9. Федеральный государственный образовательный стандарт среднего общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413) (ред. 11.12.2020). URL: https://fgos.ru (дата обращения: 10.03.2021).
- 10. Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № P-4). —URL: http://www.consultant.ru/document/cons_doc_LAW_374695/ (дата обращения: 10.03.2021).
- 11. Методические рекомендации по созданию и функционированию центров цифрового образования «IT-куб» (утверждены распоряжением Министерства просвещения Россий-ской Федерации от 12 января 2021 г. № P-5). URL: http://www.consultant.ru/document/cons doc LAW 374572/ (дата обращения: 10.03.2021).
- 12. Методические рекомендации по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей («Точка роста») (утверждены распоряжением Министерства просвещения Российской Федерации от

12 января 2021 г. № Р-6). — URL:

http://www.consultant.ru/document/cons_doc_LAW_374694/ (дата обращения: 10.03.2021).

4. Планируемые результаты освоения программы обучающимися

Содержание обучения представлено следующими модулями.

Модуль 1. Проект-игра «Перетягивание канатов».

Модуль 2. Проект-игра «Пятнашки».

Модуль 3. Проект-игра «Охота за сокровищами».

Модуль 4. Проект-игра «Разрушители замков».

Модуль 5. Проект-игра «Землетрясение».

Модуль 6. Проект-игра «Сортировщик».

Личностные результаты:

- развитие пространственного воображения, логического и визуального мышления, наблюдательности, креативности;
 - развитие мелкой моторики рук;
- формирование первоначальных представлений о профессиях, в которых информационные технологии играют ведущую роль;
 - воспитание интереса к информационной и коммуникационной деятельности.

Метапредметные результаты:

- формирование алгоритмического мышления через составление алгоритмов в компьютерной среде VEXcode VR;
 - овладение способами планирования и организации творческой деятельности.

Предметные результаты:

- ознакомление с основами робототехники с помощью универсальной робототехнической платформы VEXcode VR или аналогичной ей (виртуальной или реальной);
- систематизация знаний по теме «Алгоритмы» на примере работы программной среды Scratch с использованием блок-схем программных блоков;
- овладение умениями и навыками при работе с платформой (конструктором), приобретение опыта практической деятельности по созданию автоматизированных систем управления, полезных для человека и общества;
 - знакомство с законами реального мира;
 - овладение умением применять теоретические знания на практике;
- усвоение знаний о роли автоматизированных систем управления в преобразовании окружающего мира.

Модуль 1. Проект-игра «Перетягивание канатов».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

Модуль 2. Проект-игра «Пятнашки».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

Модуль 3. Проект-игра «Охота за сокровищами».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

Модуль 4. Проект-игра «Разрушители замков».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

Модуль 5. Проект-игра «Землетрясение».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

Модуль 6. Проект-игра «Сортировщик».

При выполнении проекта обучающиеся создают и программируют собственные роботы для выполнения условий игры.

5. Тематическое планирование

<u>№</u> п/п	Тема	Содержание	Целевая установка урока	Кол-во часов	Основные виды деятельности обучающихся на уроке/внеурочном занятии
1	Модуль 1. Проект-игра «Перетяги- вание кана- тов».	Создание и программирование собственного робота для проектаигры	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект и участвует в соревнованиях	12	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы
2	Модуль 2. Проект-игра «Пят- нашки».	Создание и программирование собственного робота для проектаигры	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект и участвует в соревнованиях	12	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы
3	Модуль 3. Проект-игра «Охота за сокровища- ми».	Создание и программирование собственного робота для проектаигры	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект и участвует в соревнованиях	12	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы
4	Модуль 4. Проект-игра «Разруши- тели зам- ков».	Создание и программирование собственного робота для проектаигры	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект и участвует в соревнованиях	12	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы
5	Модуль 5. Проект-игра «Землетря- сение».	Создание и программирование собственного робота для проектаигры	На основе полученных знаний по работе с платформой каждый обучающийся создаёт свой проект и участвует в соревнованиях	12	Наблюдение за работой учителя, совместное с учителем программирование скриптов, самостоятельная работа с инструментами среды, ответы на контрольные вопросы
6	Модуль 6. Проект-игра	Создание и программирование	На основе полученных знаний по	12	Наблюдение за работой учителя, совмест-

«Сортиров-	собственного робо-	работе с платфор-		ное с учителем про-
щик».	та для проекта-	мой каждый обу-		граммирование
	игры	чающийся		скриптов, самостоя-
		создаёт свой про-		тельная работа с ин-
		ект и участвует в		струментами
		соревнованиях		среды, ответы на кон-
				трольные вопросы
Итого			72	

6. Материально-техническое обеспечение МФУ, Ноутбук Тип 3 (14 штук), Напольная мобильная стойка для интерактивных досок или универсальное настенное крепление,

Моноблочное интерактивное устройство, Электронный конструктор «VEX IQ»

- 7. Дидактические материалы
 1. Платформа программирования VEX Code IQ
 2. Инструкции Vex